
Review Questions

1. Remember that and in Scheme is a kind of expression. Write
a procedure myAnd that takes any number of arguments and
returns #t if all of those arguments evaluate to #t.

2. Remember apply-proc in our Minisheme interpreter. This took a
procedure and zero or more literal arguments (such as
numbers; not parse trees) and returned the result of applying
the procedure to the arguments. Here is my code for this
procedure:

(define apply-proc (lambda (p args)
(cond
[(prim-proc? p)

(apply-prim-proc p args)]
[(closure? p)

(eval-exp (Body p)
(extended-env Params(p)

(map box args)
(Env p)))])))

How would this procedure change if we used dynamic binding
rather than static binding?

3. Use foldl or foldr to write alternating-sum, a procedure that
takes vector (a b c ... e) and produces

a-b+c-d+e

Use foldl or foldr to write (rember-all a lat)

Use foldl or foldr to write (count a lat)

Or to write (index a lat)

4. Here is a binarya tree definition.
(define new-tree (lambda (value leftChild rightChild)

(list 'tree value leftChild rightChild)))
You can make up getters for the three fields.

Write a procedure that returns a list of the values stored in the tree
in a pre-order traversal (root, then everything in its left-most subtree,
etc.) For example, with this tree:

you should return (5 6 1 3 7 2 4)

Write procedure (SameElts lat1 lat2) that returns #t
if lat1 and lat2 have the same elements in the same
multiplicities but not necessarily the same order.

7. Give a CPS version of (rember a lat). Remember that (rember a
lat) removes the first instance of a from lat.

8. Give a Scheme expression that creates the stream Power$
that has powers of 2 and powers of 3, in increasing
numerical order starting with 1. If you use print$ on your
stream you should get the values (1, 2, 3, 4, 8, 9, 16, 27,
32...)

9. Here are some practice problems for Continuation-
Passing Style :

A. Give a tail-recursive continuation-passing-style function (rember-k a lat k) that
removes the first occurrence (only the first) of atom a from lat and then applies
k to the result. So
(rember-k 'b '(a b a b a b b) (lambda (x) x)) returns '(a a b a b b)

B. Give a tail-recursive continuation-passing style function (index-k a lat k) that
returns the 0-based index of the first occurrence of atom a in lat. So
(index-k 'b '(a b a b b)top) returns 1.

C. Give a tail-recursive continuation-passing-style function (max-k L k) that
returns the largest element of the not-necessarily-flat list L of numbers. For
example,
(max-k '(5 3 (4 7 2 (5) 1)) top) returns 7

D. Give a tail-recursive continuation-passing style function

(replace-k old new L k) that replaces each instance of atom old with

atom new in the general list L. For example,
(replace-k 'a 'x '(a b c (b c (a))) (lambda (x) x)) produces (x b c (b c (x)))

