Review Questions



1. Remember that and in Scheme is a kind of expression. Write
a procedure myAnd that takes any number of arguments and
returns #t if all of those arguments evaluate to #t.



2. Remember apply-proc in our Minisheme interpreter. This took a
procedure and zero or more literal arguments (such as
numbers; not parse trees) and returned the result of applying
the procedure to the arguments. Here is my code for this
procedure:

(define apply-proc (lambda (p args)

(cond
[(prim-proc? p)
(apply-prim-proc p args)]
[(closure? p)
(eval-exp (Body p)
(extended-env Params(p)
(map box args)

(Env p)))])))

How would this procedure change if we used dynamic binding
rather than static binding?



3. Use foldl or foldr to write alternating-sum, a procedure that
takes vector (a b c... e) and produces
a-b+c-d+e

Use foldl or foldr to write (rember-all a lat)

Use foldl or foldr to write (count a lat)

Or to write (index a lat)



4. Here is a binarya tree definition.
(define new-tree (lambda (value leftChild rightChild)
(list 'tree value leftChild rightChild)))
You can make up getters for the three fields.

Write a procedure that returns a list of the values stored in the tree
in a pre-order traversal (root, then everything in its left-most subtree,
etc.) For example, with this tree:

A
6 2
SN\ /
1 /3 4
7
you should return (56137 2 4)



Write procedure (SametElts latl lat2) that returns #t
if latl and lat2 have the same elements in the same
multiplicities but not necessarily the same order.



7. Give a CPS version of (rember a lat). Remember that (rember a
lat) removes the first instance of a from lat.



8. Give a Scheme expression that creates the stream PowerS
that has powers of 2 and powers of 3, in increasing
numerical order starting with 1. If you use printS on your
stream you should get the values (1, 2, 3,4, 8, 9, 16, 27,
32...)



9. Here are some practice problems for Continuation-
Passing Style :

. Give a tail-recursive continuation-passing-style function (rember-k a lat k) that
removes the first occurrence (only the first) of atom a from lat and then applies
k to the result. So

(rember-k 'b '(ab ab abb) (lambda (x) x) ) returns '(aabab b)

Give a tail-recursive continuation-passing style function (index-k a lat k) that
returns the 0-based index of the first occurrence of atom a in lat. So
(index-k 'b '(a b a b b)top) returns 1.

Give a tail-recursive continuation-passing-style function (max-k L k) that
returns the largest element of the not-necessarily-flat list L of numbers. For

example,
(max-k'(53 (47 2(5)1)) top) returns 7

. Give a tail-recursive continuation-passing style function
(replace-k old new L k) that replaces each instance of atom old with

atom new in the general list L. For example,
(replace-k 'a'x '(a b c (b c (a))) (lambda (x) x) ) produces (x b c (b c (x)))



